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QUASI-INTERPOLATORY SPLINES 
BASED ON SCHOENBERG POINTS 

V. DEMICHELIS 

ABSTRACT. By using the Schoenberg points as quasi-interpolatory points, we 
achieve both generality and economy in contrast to previous sets, which achieve 
either generality or economy, but not both. The price we pay is a more com- 
plicated theory and weaker error bounds, although the order of convergence 
is unchanged. Applications to numerical integration are given and numerical 
examples show that the accuracy achieved, using the Schoenberg points, is 
comparable to that using other sets. 

1. INTRODUCTION 

In several recent papers [1-5] Dagnino et al. studied the application of quasi- 
interpolatory (QI) splines to numerical integration. This class of QI splines, intro- 
duced in [6], can be defined, starting with a positive integer p > 2, the order of the 
spline space, a partition 

YN: YON:= a < YIN < ... < YNN < YN+1,N := b, 

and a set of positive integers {dJN; j = O. ... , N + 1}, where dON = dN+?,N = P 

and djN < p, j = 1,...,N. Now we set n := Z:N70djN and write I-In for the 
nondecreasing sequence {Xin; i = 1, . .. , n + p} obtained from YN by repeating YjN 

exactly djN times, j = O,... ., N + 1. The norm Hn of the set -In is defined by 

HnI: max (X?il,n -Xi) 
1<i<n+p- + 

We shall assume throughout this paper that 

Hn~ )-O as n - oo. 

Let Pp be the set of polynomials of order p, or degree < p - 1; we define the 
spline space Splrn by 

PT E{g YI(yjNXyj+lN) e Pp. j = 0,. , N and (i)(+ 9(i)YN) = 

O,1,...,p-djN-1; j = 1,...,N}. 
Thus S Pin is the class of polynomial splines of order p, with knots and boundary 

points YjN, J = 0,. . . , N + 1, of multiplicity djN. Since djN < p, j = 1,.. N, our 
splines will be continuous in [a, b]. 
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We say that the sequence of partitions {YN} is locally uniform (LU) if there 
exists a constant A > 1 such that 

(Yi+1,N -YiN)/(Yj+1,N - YjN) < A, 

for all 0 < i, j < N with li-il = 1 and for all N . We shall say that a sequence of 
spline spaces {SArn } is LU if the sequence of underlying partitions {YN} is LU. 

We consider in SAn the approximating splines Qnf of the form [6] 

n 1 

( 
l ) 

~~(QnQ) (X) := 
( 

ai j [Til I .. I Tij ] f )Ni~n (x) I 
i=1 j=1 

where 

(2) Nin(x) -= (Xi+pn -Xin)[Xini * * xi+pn]Gp(.; x), i = 1, ... , n, 

with 
Gp(t; x) := (t - x)+ 

The NiPn are the normalized B-splines of order p forming a basis for S7n, 
[zo, ... , zp]h is the pth divided difference based on the points zo, . . ., zp, 1 < 1 < p; 
the sets {ril,..., ril; i = 1, ... , n} can be chosen in a suitable way and the ca>ij, 
defined below, are such that Qng = g for all g = P1 [6]. We assume that -rij = 'rik 

for j 7& k, so that the divided differences involve only function values. Under this 
assumption, Qn f can be expressed by [1] 

n 1 

(3) (Qnf )(X) n= ZNn(X) vij f (Trij), 

where 

i 
,= fjl,=,-r(7j --ris)' 

We consider now the following quantities [6]: 

5 E _Dr(f - Qnf)(X)i 0 < r <s, 
(5) rs - I DrQnf(X)i s < r < p. 

We are interested in the different classes of QI points rij such that, if f E 
Cs-1 [a,b] with 1 < s < I < p, then for 0 < r < s 

(6) f|Dr(f - Qnf)IK < CrHn-r-lw(Ds-lf;Hn; [a,b]), 

where, for any g E C(I), 

w(g;A;I):= max If(x+h)-f(x)I 
x,x+hCI 
O<h< A 

and where lihiK := max Ih(x)I. 
a<x<b 
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When for all 1 < i < n 

(7) Tij E i = 1, ...,1, 

bounds for IEns (x) I are given in [6, Theorems 5.2 and 5.3]. Using these bounds, 
one can prove that (6) holds if we choose the rij as the following set 

T1 : Tij := Xin + (j - )[(Xi+p~n -Xin)/(l -1)], j = 1, . .. ,1, i = 1, ... ., n. 

This choice is suggested in [6] and used in [1, 2]. A second choice, suggested in [4], 
is 

T2 : Tij := Xin + (i- ) [(Xi+p~n-Xin)ll] v j =1, . .. ,1, i = 1, ... ., n. 

For both sets T1 and T2 it is proved in [4] that (6), with r = 0, holds for an 
arbitrary sequence of spline spaces JSpilrn }, while, if 0 < r < s, the sequence of 
spline spaces has to be LU in order that (6) holds. 

The parameter sets T1 and T2 give great flexibility in the definition of the spline 
space SP,"n; multiple knots can be used and, for r = 0, there is no restriction in the 
distance between distinct knots. However, to construct our approximation Qnf, 
we need up to n(l - 1) - p + 2 evaluations of f for T1, and n1 for T2. 

We can reduce the number of evaluations of f when djN=1, j = 1,.. .,N, by 
choosing the rij as one of the following sets: 

T3 : Tij:= Xi+;l -,n 
T4 ij Xi+jnJ 

in which case it makes sense to set 1 = p. 
The sets T3 and T4 are suggested in [3]; the rij are chosen here to be a subset of 

the set of knots Ki := fXin, ... , xi+pn} except near the endpoints where the knots 
are not all distinct, in which case the Tij can be given by T1 for i = 1, n, while 
for i = 2 ... .,p- land i = nr-p + 2,. .. r n- 1 the rij are chosen to include the 
distinct knots in Ki augmented by some of the points Tlj or rnj as the case may 
be. A more symmetric set, suggested in [43, is 

Ts: Tij =(Xi+j-l,n +xi+j;n)/2, j = 1). ..1) i = p . .. , n + 1- p 

and Tij as in the definition of T3 and T4 for the remaining values of i. 
For the sets T3- T5 it is proved in [3, 4] that (6) holds if the sequence of spline 

spaces {Sp,Irn } is LU. 
The number of function evaluations is n + p - 2 for T3, T4, and n + p + 1 for 

T5. In general, the sets T3- T5 contain much fewer points, and hence it is more 
economical to use them. However, they require that all interior knots in the spline 
be simple, whereas using T1 or T2, we can place multiple knots anywhere we wish. 

In order to achieve both the flexibility of T1 and T2 in the choice of the spline 
space and the economy of computation of T3- T5, we suggest the following set of 
parameters: 

T6 Til :=i, := ,i?1n, 

* l i2 = i-l, Ti3 := +li . . ., Til := (g,(1)i i = [1/2] + 1, ... ., n - [1/2], 
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where, for all real x, [x] denotes the greatest integer less than or equal to x, 

{ i- [1/2] if I is even, 
S(l ) + [1/2] if I is odd, 

and (i := (xi+1n + +xi+pl,n)/(p-l), i = 1,.. , n, is the ith Schoenberg point. 
Near the endpoints, for i = 1, n, the Ti, with v = 2.....,I are the Schoenberg 

points, respectively to the right of C1 if i = 1 and to the left of (n if i = n. For 
i= 2, ..., [1/2] (i = n - [1/2] + 1, . . ., n -1), the -ri, are defined as in T6 for 
v = 1, . . ., j with j such that rij = (I (-rij = (n), whereas for v = j + 1, . . . ,1, 
the -ri are respectively the Schoenberg points to the right of rij-1 (to the left of 
tij- 1)- 

For I = 2 the choice T6 leads to the Schoenberg variation-diminishing spline 
since, when Til = C(, then ai2 = 0, i = 1,... , n (see [6]). 

Using T6 to determine Qn f, we need only n evaluations of f. Moreover, we can 
place multiple knots anywhere in [a, b]. 

In ?2 we will prove that (6) holds if the sequence of spline spaces {SPinj } is LU. 
Moreover, we will give a uniform bound for the derivatives DrQnf, with s < r < p. 
In order to achieve this result, we will modify slightly the error estimates proved in 
[6], since the set of parameters T6 does not satisfy the conditions (7). In ?3 we will 
apply sequences of splines {Qnf } based on T6 to problems in numerical integration, 
including product quadrature of Riemann integrable functions and Cauchy principal 
value (CPV) integrals. We will also give some numerical examples. 

2. ERROR BOUNDS FOR QI SPLINES BASED ON SCHOENBERG POINTS 

In this section we give an estimate for Ers (x) J, defined by (5), with Qnf defined 
by (1) with parameters T6. We base our procedure on the results of [6]. To simplify 
the notation in this section and in the next, we denote the knots by xi instead of 
xiA. Xn- 

First we need the following result proved in [6, Lemma 4.1]. 

Lemma 1. Suppose Qn is defined on a class of functions containing Pl, and sup- 
pose Qn reproduces P,. Then, for any polynomial g E P. and any f such that D'f 
exists, 0 < r < s < I < p, there holds 

En (_{ Dr(R-QnR)(x), 0 < r < s, 
Ers - X 

DrQnR(x), s < r < p, 

where R(x) = f (x) - g(x) . Cl 

For a fixed a < t < b, let m be such that t E Jm [xm, xm+i ). We write Ii, for 
the smallest closed interval containing {rij;j = 1,... , vj} and Im for the smallest 
closed interval containing Jm and Uimmip hi. For the set of parameters T6, 

(8) Iij C [XTli)v Ixr(i)] 

for j = 1,... 1, where 

P) i II..1, . , [p/2], 

(9) I (i) := - ] in[p/2] + 11 ... I n-[p/2], 
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and 

2p - 1, i 1 .. 1, , p2], 
(10) i + [p/2] p-1, i=[p/2]+ II... n-[p/2], 

n+p - 1 i =n +lI-[p/2], ....... ,n. 

Moreover, for p ? m < n, 

(11l) Im C [Xl (m) I xr(m)] I 

where 

(12) l(m) :=l(m+l-p) 

and 

(13) r(m) (m) 

We define now, for f E Cs-l(Im), 

(14) R(x) := f (x)- E if (x-t)i. 
i=O 

If R(x) is defined by (14), so that g(x) is the Taylor expansion of f at t, then 
R(x) and its first s - 1 derivatives are 0 at t. Hence, to give a bound for Ens(t), it 
is only necessary to estimate DrQnR(t) [6]. 

By [6, Lemma 4.3], and since ril := (i for all i, the coefficients a3ij in (1) can be 
defined by 

(15) 
0O, j =2, 

aij |[(p -j)!/(p -l)!] E(xzv,-rTil) ..(xvi-l T isj 1) j = 1, 3, ...1, 

where the sum is taken over all choices of distinct v1, . .., vj1 from i+1, . . ., i+p-1. 
This is a sum of (p - l)!/(p - j)! terms. 

We recall that 0 < NjPn(x) < 1 for x E (xi, xi+p) and NjPn(x) = 0 otherwise, 
except that Nlpn(a) = NnPn(b) = 1 [7]. Now, setting Aijg := [1il,... ,Tij]g, we have 
for t E Jm 

m 1 

Qnf (t) = E ZEij Aij fNPn (t) 
i=m+l-p j=l 

j#2 

since all other terms in the sum (1) are zero, and 

m 1 
DrQnf (t) = Z ijAijfDrNjPn(t). 

i=m+l-p j=1 
j#02 

From Lemma 1, R(x) defined as in (14) satisfies 

IErn,(t)l = JDrQnR(t)I < E JDrNjPn(t)I S JoijHAijRI. 
i=m+l-p j=1 

j#2 

To give a bound for IEnS(t)1, we need the following lemma [6, Lemma 2.1]: 
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Lemma 2. Let NiP(x) be defined as in (2). Suppose x E Jm and i < m < i + p. 
Fix 0 < r < p. If x = xm, suppose also that xm is of multiplicity at most p - r - 1. 
Then the rth derivative DrNipn(x) exists, and 

(16) lDrNiPn(x)l < H pr 
6im'p-1 .. im'p-r 

where, for j = p - r, ... , p - 1, we define 6imj as the minimum of x,+j - x, over 
v such that xi < xL < x < xu+j < xi+p, and where 

pr. (P-i)! ( 'P 1 rPr := (p,-,r- 1) ! [r12]) 

By using (15) and (16) we state the following lemma [6, Lemma 4.4]: 

Lemma 3. Suppose Qn reproduces polynomials P1, and cij are as in (15). Then, 
given t E Jm and R as in Lemma 1, we have 

(17) DrQnR(t) ?P pr m+axT~i~m ) 
j=1 
j#2 

where 

(. j=2, 

Aij := g max IdVl - i1i Ixz j-1 l j= 1 3,..., 1 D 
+ '<...'j _ < ~p - 1 6imp-1 ... dim p-r 

I>,distinct 

We need to introduce parameters describing the spacings of the -rij and the knots. 
For each integer 1 < v <1 - 1 let 

iju lmin ('2P? z. A) 

where I . i)} is the increasing rearrangement of {1,il . . ., -r}. We set 

ri's m ~in CrijS. 

We define 
Am max (xi+1 -xi), 

l(m)?i~r(m)-1 

so that the norm of Hn has the form 

Hn :=max Am, 
p<m<n 

and we define 
n :=min Am. 

p<m<n 

Moreover, we set 

Em = min (xi+1-xi), 
l(m)<i<r(m) -1 

i:xi <xi+i 

&mp-r= min (xu+pr-xi)) r=0,1,...,p-1. 
m+1-p+r<?<m 

The following lemma provides a bound for AAijRI, when R is defined as in (14). 
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Lemma 4. Let 1 < s < 1. Let m + 1-p < i < m. Then, if f E CSl (Im)l 

IAi RI < (p + [p/2] - 1)w(Ds if; Am; Im) 

(18) U (i-)! (s -j)!' j=1,2..., 
2j-s 

,1 j=s+l, ...,il, 
(s-l)!Uijyy-l .. ijs 

where r7ij E Iij 

Proof. The proof is the same as in [6, Lemma 5.1] if one takes in account that, for 
any x E Im and t E Jm, we have 

lDS-1f (x) - Ds-1f (t) I < (p + [p/2] - 1)w(D 1 f; Am; Im). ? 

Now, we can state the following theorem, which provides a local error estimate. 

Theorem 4. Iff E Cs (Im) with 1 < s < I < p, then for O < r < p, 

(19) max IE(t)l ? Cm rlw(Dslf;Am; Im), 

where 

Cm p (p + [p/2] -1) [p + 2 ([p/2] -1)]S1Ppr (6,i)r 

(20) s 

* LE U()-l(S-)! 
+ (s S1)! (2Pm)JsI 

j=1 i~~~~=s+1 
U542 j#2 

and 

(21) Pm max xfi(i) - XT(j) 
m+l-p<i~m Olis 

Proof. We sketch the proof, which is similar to the proof in [6, Theorem 5.2]. 
Since qij E Iij C Im, by (11), (12) and (13) we have 

(22) 7lqij - tj < (p + [p/2] - I)Am. 

Since both x,, and Tr11 belong to Iij, then, from (8), (9) and (10), 

(23) XV A - i4 < |Xr(j) - XT(i) < [p + 2([p/2] - l)]m 

holds. 
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By (17), (18), (22) and (23) we can write 
(24) 

JErn (t) I < p(p + [p/2] - 1)pr m8i'fi m iS j-l)!(sj-)!A 
Ij=1 
j#2 

? ( (-l)! - Aij w(DSlf; Am; im) 

j:02 

< p(p + [p/2] - i)rpr 
s 

[(p + 2([p/2] - 1))/\m]sj [(p + 2([p/2] - 1))/\M]-) 

=1 (j-1)!(s-j)! m,p-r 
j02 

23-8s (Xf (i) - Xr(,)3 )J1 

? ES m+l-p<i<m [ (s-) !e 93 -I-r ] Jw(Ds Pf;A ;Im). 

j#2 

Formulas (19), (20) and (21) follow from (24). O 

We now state the following corollary: 

Corollary 5. Let f E Cs1- (Im) with 1 < s < <p, and assume that Qn f belongs 
to a LU spline space Sp,,,, with constant A. Then, for 0 < r < p, there holds 

(25) max CE(t) ? < rA-r-l 
w(Dslf;,Am; 

Im). 
tEJm 

Proof. By Theorem 4 we need only prove that Pm and Am/6m,p-r are uniformly 
bounded for all m and n. 

Since, from (12) and (13), one has r(m) - 1(m) < 2(p + [p/2]) - 3, by local 
uniformity, we have for all m + p -1 <i < m, 

2(p+[p/2]) -4 

(26) X7 (i) -Xl(i) < Xr(m) - Xl(m) ? m Z Ak. 
k=O 

Assuming that ()= , 1 < ,ai < 1-1, we have 

(27) (1) = -( + 1 - = (x,+p-Xv+i)/(P - 1) > 6m/(P -1). 

Inserting (26) and (27) in (21) and recalling cis > ail, we get 

(28) Pm < P 

with 
2(p+[p/2])-4 

p:= (p-l) Ak. 
k=O 
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Moreover, by using local uniformity, we have 

6m > AmAI-[2(p+[p/2])-4] 

and, since 6m,p-r > 6m, 

(29) Am A 2(p+[p/2])-4 

6m,p-r 

Inserting (28) and (29) in (20), we obtain the error bound (25). 

Note that, from Lemma 2, whenever we write that a result is true for t E Jm 
then it is true for all relevant r and s if t E (Xm, Xm+1). When r = 0, it is true for 
all relevant s if t E [Xm, Xm+i]. 

Corollary 6. Let f E Cs-i [a, b] with 1 < s < 1 < p, and assume that Qnhf satisfies 
the hypothesis of Corollary 5. Then, for 0 < r < s, the uniform bound (6) holds 
with Cr = Cr, and for s < r < p 

gDrQn fl0 < CrHs-rlW(Ds-lf; Hn; [a, b]). 

Proof. From Corollary 5 our assertion follows immediately since for all m and n 

Hn <Am <Hn. 

Finally we state the following lemma: 

Lemma 7. Suppose Qnf satisfies the hypothesis of Corollary 5; then the values 
vij defined by (4) satisfy 

vijI <Zpl. 
/1=-i 

Proof. From (15), (21) and (28) it follows that 

*ailipl< (p.ClHl 

Moreover, 

f(Tij-T8is)?>o1 a ? 
8=1 
s7Aj 

3. APPLICATION TO NUMERICAL INTEGRATION AND COMPUTATIONAL RESULTS 

Convergence results were already proved for product quadrature rules based on 
QI splines using parameters T1 - T5 in [1, 3-5]. These convergence results are 
both for bounded [1, 3, 4] and unbounded integrands [4]. Pointwise and uniform 
convergence results are proved in [1, 3, 5] for sequences of CPV integrals of these 
splines. We apply these convergence results to the QI splines based on T6. 
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From Corollary 6 with s = 1, r = 0 and from Lemma 7, it can be proved as in 
[1] that 

(30) l(KQnf) j K(x)Qnf(x)dx - lI(Kf) as n -x 00 

for K E Li(J), with J:= [-1, 1] and f E R(J), the set of all (bounded) Riemann- 
integrable functions. 

By Corollary 5 with s = 1, r = 0, 1, it can be proved as in [1] that 

J(UQnf; A) Ju(x) X A dx- j(uf;A) as ne-oo, 

where lim { j + j }, for u and f such that J(uf; A) exists and 

A EJ:= (-1, 1). 
Introducing the modified QI splines 

n-i 

Qnf (X) = f (-l)Nln () + Ni(n ) d Vij f (Tbg) + f (1)NNnn ), 
i=2 j=1 

which can be defined using parameters T6 since T11 :i= 4=-1 and tin -(:n = 1, 
we can prove as in [5] that 

J(wQnf; A) -* J(wf; A) as n -* 0o, 

uniformly with respect to A in J, for f E H,,(J) with 0 < 1a < 1 and w(x) 
(1-x)(1? + x) with al, - >-1, if ,u + min(oa, f) > 0. Here, 

H,(J) := wg: w(g;t;J) < Btl",B > 0,0 < 1a < 1}. 

Finally, we give some computational results obtained by using the quadrature 
rule 

n p 

(31) T(KQnf) S= VijWin(K)f(Tij), 
i=1 j=1 

where Win(K) -(KNipn), to approximate I(Kf) for test functions f E R(J) and 

K(x) .=lnlx - Al, A EJ. We define the truncation error of the rule (31) by 

(32) R(n) (Kf) := T(Kf) - T(KQnf). 

We base our calculations on the algorithm explained in [2], which we generalize 
slightly by introducing knot sequences with a multiple interior knot. For the test 
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function f(x) := X4+ JxJ, which has a singular point of the derivative at x = 0, we 
consider the following LU partition of J: 

YV := O. 

(33) L: yvij :=yv(i-,) ?t (i + 1)6121 i = 1, ..., v-1 

1Yvi +1, 

where 6 > 0 and v is such that 

Yv+(v-1) + (v + 1)6/2 > 1 - (v + 1)6/2. 

We denote by 
?t(n) the truncation error (32) of the rule (31) based on the QI points T6 and the L 

sequence of knots obtained by giving multiplicity (p - 1) to Yv - 0 in (33). 
?t(n) the trunction error (32) of the rule (31) based on T6 and the sequence of U 

simple interior knots obtained from the uniform partition U of J, where 

(34) U:pi =-1 +2il(N +1), i =0,1, .. ., )N+1. 

Table 1 reports the absolute errors for different 6, n and p. 

TABLE 1. Absolute errors for K(x) := In Ix- 1, f(x) 
x4 + IXI, 2(Kf) = -1.14788951532 

p 6 n JR ( (Kf)I JR(n (Kf)I 

3 0.5 5 4.92(-2) 4.72(-2) 
0.05 17 3.14(-3) 1.25(-3) 

0.005 55 3.48(-5) 9.27(-5) 
0.001 125 1.06(-6) 1.71(-5) 

4 0.5 7 1.19(-1) 3,26(-2) 
0.05 19 1.55(-3) 1.26(-3) 

0.005 57 1.53(-5) 9.04(-5) 
0.001 127 5.14(-7) 1.68(-5) 

5 0.5 9 3.14(-2) 1.25(-2) 
0.05 21 1.67(-4) 8.86(-4) 

0.005 59 1.67(-6) 8.51(-5) 
0.001 129 6.67(-8) 1.65(-5) 

The numerical results in Table 1 show that the partition L, with a multiple knot 
at the singular point of f'(x), performs better when n becomes large. 

For the test functions f(x) := x4-sign(x), where sign(x) := 1 if x > 0, sign(0) 
0, and sign(x) :=-1 if x < 0, and for f(x) := x4+XJXJ, we use the uniform partition 
U defined by (34) with simple interior knots. We compare in Tables 2 and 3 the 
absolute errors of the quadrature (31) based respectively on T1, with 1 = p, and T6 
for different p and n. We denote by 
t(nl) the truncation error (32) of the rule (31) based on T1 
t(nf) the truncation error (32) of the rule (31) based on T6. T6 
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TABLE 2. Absolute errors for K(x) :=ln x -4, f(x) 
X4-sign(x), 2(Kf) = -1.45785292443 

p n JR (n) (Kf) | (6) (Kf)l 

3 4 8.96(-1) 1.12(-1) 
10 6.23(-3) 8.74(-3) 
34 6.41(-4) 4.88(-4) 

130 3.99(-5) 3.00(-5) 

4 5 3.99(-1) 9.81(-2) 
11 6.86(-2) 1.01(-2) 
35 2.28(-3) 9.37(-4) 

131 1.35(-4) 5.98(-5) 

5 6 7.05(-2) 1.24(-2) 
12 5.45(-2) 3.75(-3) 
36 9.92(-4) 4.79(-4) 

132 6.12(-5) 2.99(-5) 

TABLE 3. Absolute errors for K(x) :=ln~x- 1 4f(x) 
X4 + Xjl, 2(Kf) = -1.09751837560 

p n JR (n) (Kf) | R(n6) (Kf)l 

3 4 5.91(-1) 8.30(-2) 
10 8.57(-3) 3.53(-4) 
34 9.71(-6) 3.93(-6) 

130 2.03(-8) 2.13(-8) 

4 5 9.07(-2) 4.78(-2) 
11 8.61(-3) 1.84(-3) 
35 6.57(-5) 1.22(-5) 

131 2.69(-7) 5.00(-8) 

5 6 2.23(-2) 7.54(-3) 
12 1.77(-4) 2.10(-4) 
36 7.12(-8) 3.40(-7) 

132 2.12(-10) 1.29(-9) 

The numerical results of Tables 2 and 3 confirm that the approximations, based 
on the QI points T6 (that need only n function evaluations ), have the same per- 
formance as the ones based on T1 (that need up to n(p - 1) - p + 2 function 
evaluations). 



QUASI-INTERPOLATORY SPLINES BASED ON SCHOENBERG POINTS 1247 

REFERENCES 

1. C. Dagnino, V. Demichelis, E. Santi, Numerical integration based on quasi-interpolating 
splines, Computing 50 (1993), 149-163. MR 94i:65028 

2. , An algorithm for numerical integration based on quasi-interpolating splines, Numer- 
ical Algorithms 5 (1993), 443-452. MR 94k:65029 

3. , Local spline approximation methods for singular product integration, to appear in 
Approximation Theory and its Applications. 

4. C. Dagnino and P. Rabinowitz, Product integration of singular integrands using quasi- 
interpolatory splines, to appear in Intern. J. Comput. Math. special issue dedicated to 100th 
birthday of Cornelius Lanczos. 

5. V. Demichelis, Uniform convergence for Cauchy principal value integrals of modified quasi- 
interpolatory splines, Intern. J. Comput. Math. 53 (1994), 189-196. 

6. T. Lyche and L. L. Schumaker, Local spline approximation methods, J. Approx. Theory 15 
(1975), 294-325. MR 53:1108 

7. L. L. Schumaker, Spline functions, New York: John Wiley & Sons, 1981. MR 82j:41001 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORINO, VIA CARLO ALBERTO 10, I-10123, 
TORINO, ITALY 

E-mail address: demichelis~dm.unito. it 


